Теорема. (Свойство противолежащих углов параллелограмма) . У параллелограмма противолежащие углы равны. Пусть ABCD – данный параллелограмм. И пусть его диагонали пересекаются в точке O. Из доказанного в теореме о свойства противолежащих сторон параллелограмма Δ ABC = Δ CDA по трем сторонам (AB=CD, BC=DA из доказанного, AC – общая) . Из равенства треугольников следует, что ∠ ABC = ∠ CDA. Так же доказывается, что ∠ DAB = ∠ BCD, которое следует из ∠ ABD = ∠ CDB. Теорема доказана.
У параллелограмма противолежащие углы равны.
Пусть ABCD – данный параллелограмм. И пусть его диагонали пересекаются в точке O.
Из доказанного в теореме о свойства противолежащих сторон параллелограмма Δ ABC = Δ CDA по трем сторонам (AB=CD, BC=DA из доказанного, AC – общая) . Из равенства треугольников следует, что ∠ ABC = ∠ CDA.
Так же доказывается, что ∠ DAB = ∠ BCD, которое следует из ∠ ABD = ∠ CDB. Теорема доказана.