Докажите что четырехугольник abcd с вершинами в точках а(-4; 1), в(-2; 4), с(1; 2) и d(-1; -1) является квадратом

kpy4 kpy4    1   18.08.2019 04:10    0

Ответы
lllJenyalll lllJenyalll  05.10.2020 02:11
Длина вектора AB= √(-4+2)^2+(-3)^2=√4+9=√13
Длина вектора BC=√(-2-1)^2+(4-2)^2=√9+4=√13
Длина вектора СD=√(1+1)^2+(2+1)^2=√4+9=√13
Длина вектора AD=√(-1+4)^2+(-1-1)^2=√9+4=√13
Вектор AB=вектор BC=вектор CD=вектор AD,значит,ABCD-ромб
Проведем диагонали AC и BD
Длина вектора AC=√(-4-1)^2+(1-2)^2=√25+1=√26
Длина вектора BD=√(-2+1)^2+(4+1)^2=√1+25=√26
Диагонали равны,значит,ABCD-квадрат
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия