Длины трех последовательных сторон описанного около окружности четырехугольника относятся как 1: 2: 3. найти длину его наибольшей стороны, если периметр четырехугольника равен 24 см

dju3 dju3    3   28.02.2019 10:20    0

Ответы
kViktoria2077 kViktoria2077  23.05.2020 16:51

Пусть х - одна часть в указанной пропорции.

х,2х,3х три последовательные стороны. четвертая в сумме со второй должна равняться сумме первой и третьей. (в описанном 4-нике суммы противоположных сторон равны).

Значит стороны: х,2х,3х,2х.

х+2х+3х+2х = 24

8х = 24

х=3

Длина наибольшей стороны: 3х = 9

ответ: 9 см.

ПОКАЗАТЬ ОТВЕТЫ
sanfirovngmail sanfirovngmail  23.05.2020 16:51

Пусть первая сторона равна х см, тогда вторая - 2х см, третья - 3х см.

По свойству описанного четырехугольника - суммы противоположных сторон равны.

а+с=b+d 

х+3х=2х+d

d=2x - четвертая сторона

 

Зная периметр, составляем уравнение:

х+2х+3х+2х=24

8х=24

х=3

Наибольшая сторона - 3·3=9 (см)

ответ. 9 см. 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия