Диагонали трапеции взаимно перпендикулярны.одна из них равна 6, а вторая образует с основанием угол, равный 30 градусов.найти среднюю линию трапеции.

marinazajcik0 marinazajcik0    3   25.05.2019 13:40    4

Ответы
karimjan96961 karimjan96961  21.06.2020 16:45
если диагонали трапеции перпендикулярны, то площадь трапеции равна их полупроизведению (это легко показать, если рассмотреть два треугольника, образованных диагональю - тогда кусочки второй диагонали будут высотами этих треугольников). 
но площадь трапеции равна произведению высоты на среднюю линию. т.е. если мы найдем вторую диагональ и высоту, то мы получим и среднюю линию. 

находим высоту: проведем высоту так, чтобы образовался треугольник с известной диагональю (очевидно, что она образует угол 60 с основанием) трапеции в роли гипотенузы. далее, в зависимости от того, что уже учили, можно или умножить ее на синус 60 или найти второй катет, как половину гипотенузы (катет напротив 30 градусов), а дальше воспользоваться теоремой пифагора. в любом случае выйдет 6sqrt3 (sqrt - квадратный корень). 
теперь проведем еще одну высоту так, чтобы образовался треугольник со второй диагональю в роли гипотенузы. тогда эта диагональ будет равна 12sqrt3 (угол то 30, поэтому в два раза длиннее катета) 
ну и запишем то, что было сказано о площадях: 12*12sqrt3/2=x6sqrt3 (где х - средняя линия) 
откуда и получаем, что х=12
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия