Даны две вершины параллелограмма АВСD: С(-2;3;5) и D(0;4;-7) и точка пересечения диагоналей М(1;2; 7/2). Найти уравнение стороны АВ

maria27012007 maria27012007    3   22.11.2020 21:15    12

Ответы
ынпщщ357 ынпщщ357  12.02.2021 18:30

Даны две вершины параллелограмма АВСD: С(-2;3;5) и D(0;4;-7) и точка пересечения диагоналей М(1;2; 7/2). Найти уравнение стороны АВ .

Вектор АВ равен вектору ДС.

Находим вектор ДС = (  С(-2;3;5) - D(0;4;-7)) = (-2; -1; 12).

Теперь находим координаты точки В как симметричной точке Д относительно точки М.

x(B) = 2x(M) - x(D) = 2*1 - 0 = 2.

y(B) = 2y(M) - y(D) = 2*2 - 4 = 0.

z(B) = 2z(M) - z(D) = 2*(7/2) - (-7) = 14.

Теперь можно составить уравнение стороны АВ.

АВ: (x - 2)/(-2) = y/(-1) = (z - 14)/12.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия