Дано вектор с{10;-15}, вектор b {-3;1} вектор а -2/5с+b Найдите
а) координаты вектора а
б)длину вектора а
в)разложения вектора а по векторам i и j

Otahalepi Otahalepi    2   03.12.2021 07:40    81

Ответы
cabans354 cabans354  21.12.2023 15:34
Для решения данной задачи, нам необходимо выполнить несколько шагов.

а) Найдем координаты вектора а.

Известно, что вектор а представляет собой сумму векторов с и b, умноженных на коэффициенты -2/5 и 1 соответственно.

Подставим значения векторов в данное уравнение:

а = (-2/5)с + b
= (-2/5)(10;-15) + (-3;1)

Умножим каждый компонент вектора с на -2/5:

а = (-2/5)(10;-15) + (-3;1)
= (-2/5) * 10; (-2/5) * (-15) + (-3;1)
= (-4;6) + (-3;1)

Теперь сложим компоненты векторов:

а = (-4;6) + (-3;1)
= (-4 - 3; 6 + 1)
= (-7;7)

Таким образом, координаты вектора а равны (-7;7).

б) Найдем длину вектора а.

Для расчета длины вектора а, воспользуемся формулой:

|а| = √(а₁² + а₂²)

где а₁ и а₂ - компоненты вектора а.

Подставим значения компонент вектора а:

|а| = √((-7)² + 7²)
= √(49 + 49)
= √98
≈ 9.899

Таким образом, длина вектора а примерно равна 9.899.

в) Разложим вектор а по векторам i и j.

Для этого необходимо выразить каждую компоненту вектора а через векторы i(1;0) и j(0;1).

Рассчитаем проекцию вектора а на вектор i:

аₓ = a * (i/|i|)
= (-7;7) * (1/|1|)
= (-7;7)

Рассчитаем проекцию вектора а на вектор j:

аᵧ = a * (j/|j|)
= (-7;7) * (0/|1|)
= (0;0)

Таким образом, разложение вектора а по векторам i и j будет равно:

а = аₓ + аᵧ
= (-7;7) + (0;0)
= (-7;7)

Итак, координаты вектора а равны (-7;7), его длина примерно равна 9.899, и он разложен по векторам i и j как (-7;7).
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия