Дан куб abcda1b1c1d1, ребро которого равно а. секущая плоскость проходит через середину ребра ad и прямую b1c. постройте сечение этого куба этой плоскостью и найдите его площадь

zakharskaoye07y zakharskaoye07y    3   23.06.2019 15:00    3

Ответы
котенок134 котенок134  02.10.2020 09:21
1) M - cередина AD,
M∈(ABC), C∈(ABC) ⇒ проведем MC
(B1C)∈(BCC1), M∈(ADD1), а т.к. (ADD1) || (BCC1), то секущая плоскость будет пересекать (АDD1) по прямой k, проходящей через точку М параллельно B1C. k пересечет АА1 в точке N, причем AN=NA1. 
N∈(AA1B1) и B1∈(AA1B1) ⇒ проведем NB1 
MNB1C - сечение куба 
2) MN || B1C, CM=B1N=√(a²-(a/2)²)=a√3/2 ⇒ MNB1C трапеция
S (MNB1C) = 1/2 (MN+B1C) * NH, где NH - это высота трапеции 
B1C=a√2 / 2 
MN = 1/2 B1C = a√2 / 4
B1H = 1/2 (B1C - MN) = a√2 / 4
NH = √(B1N² - B1H²) = a√10 / 4
S (MNB1C) = 3 a² √5 / 16
Дан куб abcda1b1c1d1, ребро которого равно а. секущая плоскость проходит через середину ребра ad и п
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия