Дан abcda1b1c1d1 - прямоугольный параллелепипед, m - центр грани aa1d1d. найти угол между векторами bm и b1c, если измерения параллелепипеда: ab = 4 м, ad = 3 м, aa1 = 5. , !

tamaragladysheva tamaragladysheva    2   01.10.2019 17:30    129

Ответы
emesiemesi95 emesiemesi95  09.10.2020 10:01

Этот угол можно найти двумя

а) геометрическим,

б) векторным.

а) При этом делаем перенос отрезка ВМ в общую точку с отрезком В1С, а именно точкой В в точку С и это будет общая точка С.

Получаем треугольник В1СМ. Находим длины его сторон.

В1С = √(9 + 25) = √34,

СМ = √(4² + (3/2)² + (5/2)²) = √(16 + 2,25 + 6,25) = √24,5.

В1М = √(4² + (3+(3/2))² + (5/2)²) = √(16 + 20,25 + 6,25) = √42,5 .

Угол С (общая точка двух отрезков) находим по теореме косинусов.

cos С = ((B1C)² + CM² - (B1M)²)/(2*{B1C|*|CM|).

Подставив значения, получаем cos C = 0,277184.

Угол С равен 1,289935 радиан или 73,907817 градуса.

б) Поместим параллелепипед точкой В в начало координат, АВ по оси Ох, ВС - по оси Оу.

Координаты точек:

В1(0; 0; 5), С(0; 3; 0), вектор В1С(0; 3; -5), модуль √34.

В(0; 0; 0), М(4; 1,5; 2,5), вектор ВМ(4; 1,5; 2,5, модуль √24,5.

cos C = |(0 + 4.5 + (-12.5)|/(√34*√24.5) = 0,277184.

Угол равен 1,289935 радиан или 73,907817 градуса.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия