Через точку, расположенную на расстоянии 10 см от центра окружности, проведены касательные к ней. найдите расстояние между точками касания, если радиус окружности 6 см.

koren27 koren27    1   06.06.2019 06:20    2

Ответы
innapuna8 innapuna8  06.07.2020 13:57
АВ и ВС касательные, АО=10, проводим радиусы ОВ=ОС=6 перпендикулярные в точки касания, треугольник АОВ прямоугольный, АВ=корень(АО в квадрате-ОВ в квадрате)=корень(100-36)=8, точка Н пересечение АО и ВС, треугольник АВС равнобедренный АВ=ВС как касательные проведенные из одной точки, ВН-биссектриса угла А (центр вписанной в угол окружности лежит на биссектрисе) = медиане=высоте, АО перпендикулярно ВС, ОН=х, АН=АО-ОН=10-х, треугольник АВН, ВН в квадрате=АВ в квадрате-АН в квадрате, ВН  вквадрате=64-100+20х-х в квадрате, треугольник ОВН , ВН в квадрате=ВО в квадрате-ОН в квадрате=36-х в квадрате

 64-100+20х-х в квадрате=36-х в квадрате, 72=20х, х=3,6=ОН, ВН в квадрате=36-12,96=23,04, ВН=4,8, ВС=4,8*2=9,6 - расстояние между точками касания
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия