Через точку р медианы сс1 треугольника авс проведены прямые аа1 и вв1 (точки а1 и в1 лежат на сторонах вс и са). доказать, что прямые а1в1 и ав параллельны.

drblk3282 drblk3282    3   14.07.2019 19:50    12

Ответы
VETALmc005 VETALmc005  20.09.2020 17:54
А не так-то и просто :)
Пусть через вершину C проведена прямая, параллельная AB, и A2 - это точка пересечения этой прямой c продолжением прямой AA1;
Сразу видно две пары подобных трегольников
Треугольник APC1 подобен треугольнику A2PC; что означает
CA2/AC1 = CP/PC1;
Треугольник AA1B подобен треугольнику CA1A2, что означает
CA1/A1B = CA2/AB = CA2/(2*AC1) = (1/2)*CP/PC1;
То же самое можно сделать "с другой стороны медианы" (отметить на CA2 точку B2 пересечения с прямой BB1, и рассмотреть аналогичную пару подобных треугольников. Однако можно и это не делать - у вершин A и B можно просто поменять местами обозначения A <=> B)
то есть
CB1/B1A = (1/2)*CP/PC1 = CA1/A1B;
то есть A1B1 II AB по теореме Фалеса (ну, или в силу доказанного подобия треугольников ABC и A1B1C, если хотите).
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия