Боковая сторона трапеции разделена на три равные части и из точек деления к другой стороне проведены отрезки, параллельные основаниям. найдите длины этих отрезков, если основания трапеции равны 2 м и 5 м.
Теорема Фалеса. Если на одной из двух прямых отложить последовательно равные отрезки и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки. ⇒
ВК=КР=РА.
Средняя линия трапеции АВСD - отрезок МN=(ВС+AD):2=(2+5):2=3,5 (м)
Обозначим трапецию АВСD.
Точки Н и Т делят сторону СD на отрезки
СН=НТ=ТD.
Теорема Фалеса. Если на одной из двух прямых отложить последовательно равные отрезки и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки. ⇒
ВК=КР=РА.
Средняя линия трапеции АВСD - отрезок МN=(ВС+AD):2=(2+5):2=3,5 (м)
СH=HT=TD ⇒
HN=NT, поэтому
MN- средняя линия трапеции РКНТ.
Примем КН=х, РТ=у
Тогда х+у=2•3,5=7, откуда
у=7-х.
КН- средняя линия трапеции РВСТ
КН=(2+(7-х)):2=х
9-х=2х ⇒
х=3 (м) - длина отрезка КН
у=7-3=4 (м) - длина отрезка РТ