.(Боковая поверхность правильной треугольной пирамиды равна 30420мм квадратных, а ее боковое ребро - 169мм. найти площадь основания пирамиды).

Ymnushca Ymnushca    3   28.02.2019 13:20    11

Ответы
parahonya90 parahonya90  23.05.2020 17:01

Если боковая поверхность пирамиды равна 30420 см², то площадь боковой грани равна  30420 / 3 = 10140 см². 

Если боковое ребро пирамиды b, сторона основания а, а угол при вершине боковой грани α, то  169² * sinα / 2 = 10140 , откуда  sin α = 120 / 169.

Тогда  cos α = √(1 - sin²α) = 119 / 169

Сторона основания  a = 2 * b * sin α/2

В данном случае  cos α/2 = √((1 + cos α)/2) = 12/13

Тогда  sin α = 5/13  и  а = 2 * 169 * 5/13 = 130

Таким образом  Sосн = а² * √3 / 4 = 4225 * √3 см²

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия