По теореме параллельности прямых внутренние накрест лежащие углы равны, значит угол параллелограмма равен 48+48=96°, по теореме внутренние односторонние углы в скмме сост. 180°,значит 180°–96°=84° В параллелограмме противоположные углы равны ответ:84°;84°;96°;96°
Пусть биссектриса АК пересекает сторону ВС параллелограмма под углом 48гр. 1) угол ВАК = угол DAK т.к. бис делит пополам 2) ВС || AD т.к. это параллелограм 3) угол KAD = угол AKB т.к. это накрест лежащие углы при параллельных прямых ВС и AD и касательной AK 4) значит и угол ВАК= углу ВКА=48 гр 5) угол АВК = 180-48*2= 84 гр (= углу СDA так же)
В параллелограмме противоположные углы равны
ответ:84°;84°;96°;96°
2) ВС || AD т.к. это параллелограм
3) угол KAD = угол AKB т.к. это накрест лежащие углы при параллельных прямых ВС и AD и касательной AK
4) значит и угол ВАК= углу ВКА=48 гр
5) угол АВК = 180-48*2= 84 гр (= углу СDA так же)