Противоположные стороны параллелограмма равны.
Продлим биссектрису AN до пересечения с прямой ВС.
∠1 = ∠2 так как AN биссектриса,
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей AK, ⇒
∠1 = ∠3, ⇒ ΔАВК равнобедренный:
АВ = ВК = 9.
СК = ВК - ВС = 9 - 5 = 4
ΔAND подобен ΔКNC по двум углам (∠2 = ∠3 и углы при вершине N равны как вертикальные).
Обозначим NC - x, тогда DN - (9 - x),
Составим пропорцию:
AD : CK = DN : CN
5 : 4 = (9 - x) : x
5x = 36 - 4x
9x = 36
x = 4
CN = 4
Противоположные стороны параллелограмма равны.
Продлим биссектрису AN до пересечения с прямой ВС.
∠1 = ∠2 так как AN биссектриса,
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей AK, ⇒
∠1 = ∠3, ⇒ ΔАВК равнобедренный:
АВ = ВК = 9.
СК = ВК - ВС = 9 - 5 = 4
ΔAND подобен ΔКNC по двум углам (∠2 = ∠3 и углы при вершине N равны как вертикальные).
Обозначим NC - x, тогда DN - (9 - x),
Составим пропорцию:
AD : CK = DN : CN
5 : 4 = (9 - x) : x
5x = 36 - 4x
9x = 36
x = 4
CN = 4