По условию задачи биссектриса АК пересекает сторону ВС. Значит, точка К - внутренняя точка отрезка ВС . Рассматриваем два случая: угол А-острый и угол А - тупой ( см. рисунок). Так как АК- биссектриса, то \angle BAK =\angle KAD \angle BKA=\angle KAD как внутренние накрест лежащие при параллельных прямых ВС и AD и секущей АК. \triangle ABK -равнобедренный, как в случае острого угла А, так и в случае тупого угла А. AB=BK=15, BC=BK+KC=15+9=24 P _{ABCD} =2\cdot15+2\cdot24=78 ответ. 78 см
где ВК=АВ=15
сторона ВС равна сумме заданных отрезков.
Р=2*(а+в)