Достаточно доказать, что треугольники равны между собой. Построим треугольники со сторонами КВС и К1В1С1, так, что КС=АВ+АС= К1С1, К ик1 на продолжении СА и С!А1, соответственно. Эти треугольниеи равны по двум сторонам и углу между ними. Из середины кв возведем перпендикуляр до пересечения с АС в точке М. Также из середины К1В1 до М1. Треугольники КМВ и К!М1В1 , очевидно равнобедренные и равны между собой. Значит АВ=А1В1 и АС=КС-АВ=К1С1-А1В1=А1С1. Значит ∆АBС = ∆А1Б1BС1 по трем сторонам. Значит и соответствующие медианы равны между собой.
Эти треугольниеи равны по двум сторонам и углу между ними.
Из середины кв возведем перпендикуляр до пересечения с АС в точке М.
Также из середины К1В1 до М1.
Треугольники КМВ и К!М1В1 , очевидно равнобедренные и равны между собой. Значит АВ=А1В1 и АС=КС-АВ=К1С1-А1В1=А1С1.
Значит ∆АBС = ∆А1Б1BС1 по трем сторонам. Значит и соответствующие медианы равны между собой.