Так как КА перпендикулярен плоскости прямоугольника, он перпендикулярен любой прямой, лежащей в этой плоскости и проходящей через А. ⇒
∆ КАВ прямоугольный. sin∠КВА=КА:КВ.
Чтобы решить задачу, нужно найти расстояние от К до плоскости прямоугольника, т.е. катет КА прямоугольного ∆ КАВ.
По условию угол между КС и плоскостью АВСD равен 60°.
Тогда в треугольнике КАС катет КА=АС•tg60° .
Теперь вычислить искомый синус по данной выше формуле не составит труда. Таков алгоритм решения подобных задач.
Ниже дается объяснение, почему не вычислен синус по данным в задаче величинам.
———————
Примечание.
По т. о 3-х перпендикулярах КВ перпендикулярна ВС, и ∆ КВС прямоугольный с прямым углом КВС.В треугольнике КАС гипотенуза КС=АС:cos 60°=10
И тогда в прямоугольном треугольнике КВС гипотенуза КС=10 меньше катета КВ=11.
Гипотенуза не может быть меньше катета. Следовательно, условие задачи дано с ошибкой.
Так как КА перпендикулярен плоскости прямоугольника, он перпендикулярен любой прямой, лежащей в этой плоскости и проходящей через А. ⇒
∆ КАВ прямоугольный. sin∠КВА=КА:КВ.
Чтобы решить задачу, нужно найти расстояние от К до плоскости прямоугольника, т.е. катет КА прямоугольного ∆ КАВ.
По условию угол между КС и плоскостью АВСD равен 60°.
Тогда в треугольнике КАС катет КА=АС•tg60° .
Теперь вычислить искомый синус по данной выше формуле не составит труда. Таков алгоритм решения подобных задач.
Ниже дается объяснение, почему не вычислен синус по данным в задаче величинам.
———————
Примечание.
По т. о 3-х перпендикулярах КВ перпендикулярна ВС, и ∆ КВС прямоугольный с прямым углом КВС.В треугольнике КАС гипотенуза КС=АС:cos 60°=10
И тогда в прямоугольном треугольнике КВС гипотенуза КС=10 меньше катета КВ=11.
Гипотенуза не может быть меньше катета. Следовательно, условие задачи дано с ошибкой.