5. При решении этой головоломки не разрешается де- лать какие-либо рисунки и манипулировать объекта-
ми. У нас есть 10 квадратных карточек со сторонами
10, 9, 8, 7, ..., І. Карточки, стороны которых чётны,
чёрного цвета, а остальные белого. Выложим на
стол самую большую карточку, т. е. чёрную, со сторо-
ной 10. Затем на неё положим карточку со стороной 9,
но не по центру, а как показано на рисунке 138, а (в ле-
вом верхнем углу). На неё (в левый нижний угол) по-
ложим чёрную карточку со стороной 8 (рис. 138, б).
Потом на неё кладём следующую по размеру карточку
(в правый нижний угол). Продол-
жаем далее этот процесс, причём
положения карточек закручивают-
ся внутрь против часовой стрелки.
Какой чёрно-белый рисунок полу-
Чится после того, как мы выложим
последнюю карточку? Дайте пол-
б)
ное описание этого рисунка. Мож-
но проверить себя, вырезав десять
нс. 138
таких квадратов или нарисовать их
в тетради,

Ananasikbeauti Ananasikbeauti    3   08.04.2021 17:53    31

Ответы
tkacenkoaleksandra tkacenkoaleksandra  08.04.2021 18:00

ответ:Имеется есть 10 квадратных карточек, стороны которых равны соответственно 10 единиц, 9, 8 и т.д. до 1 единицы. Карточки с четными сторонами, черные, а остальные карточки белые. Положим на стол самую большую карточку (это черная карточка со стороной 10 единиц). Потом на нее (так, чтобы она лежала в левом верхнем углу черной карточки) положим белую карточку со стороной 9 единиц (см. рис. а). Затем на нее (в левый нижний угол) положим черную карточку со стороной 8 (рис. б). На нее (в правый нижний угол) кладем следующую по размеру карточку. Продолжим этот процесс далее, причем положения карточек как бы “закручиваются’’ внутрь против часовой стрелки. Вопрос: какой рисунок получится после выкладывания последней карточки?

Немного отвлечемся от задачек, чтобы вы сразу не бросались читать решения, а немного сами подумали над ними. Впрочем, как всегда ;) .

Стивен Барр — американский писатель и любитель математики. К математике Барр обратился довольно поздно. Он заинтересовался задачами моделирования сложных поверхностей, что и привело к тому, что он начал ей заниматься. Его интерес подерживал Мартин Гарднер. В США Барр издал три книги, которые имели довольно большой успех, возможно, даже больший, чем его художественные произведения.

А теперь приведу решения задач.

1. Произведение в знаменателе — это разность квадратов:

\[1234567890\cdot 1234567892=(1234567891-1)\cdot(1234567891+1)=1234567891^2-1,\]

откуда знаменатель сразу находится — он равен 1. Соответственно, вся дробь равна числителю, и это 1234567890.

2. Получится черный квадрат, на котором расположена белая спираль, состоящая из квадратиков, которая закручивается внутрь по часовой стрелке:

Объяснение:

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия