1)в прямоугольнике abcd ав = 24 см, ас = 25 см. найдите площадь прямоугольника. 2)найдите площадь прямоугольного треугольника, если гипотенуза его равна 40 см, а острый угол равен 60 (градусов).
1.Формула нахождения площади в прямоугольнике : а*в где а - первая сторона ,а в- это вторая сторона. а=24см в=25см 24*25=600см2(квадратных) 2.Треугольник АВС, где угол В-прямой.Угол А=60градусов, тогда угол С=30градусов, гипотенуза равна 40 см.
Катет, лежащий против угла в 30градусов равен половине длины гипотенузы, т.е 20см.
по теореме Пифагора
40^2-20^2=1600-400=1200
второй катет равен корню квадратному из 1200
1200=3*400=20корень из 3
площадь треугольника равна 1/2 произведения катетов (первый катет 20см, а второй катет - 20 корень из 3)
а=24см
в=25см
24*25=600см2(квадратных)
2.Треугольник АВС, где угол В-прямой.Угол А=60градусов, тогда угол С=30градусов, гипотенуза равна 40 см.
Катет, лежащий против угла в 30градусов равен половине длины гипотенузы, т.е 20см.
по теореме Пифагора
40^2-20^2=1600-400=1200
второй катет равен корню квадратному из 1200
1200=3*400=20корень из 3
площадь треугольника равна 1/2 произведения катетов (первый катет 20см, а второй катет - 20 корень из 3)
S=1/2*20*20 корень из 3
S=200 корень из 3(см2)