1. площадь ромба равна s. найдите площадь четырехугольника, вершинами которого являются середины сторон ромба. 2. две окружности с центрами в точках о1 и о2 пересекаются в точках а и а1, а отрезки ав и ас - их диаметры. найдите
величины углов аа1в и аа1с и докажите, что точки в, а1 и с лежат на одной прямой. 3. медианы треугольника со сторонами 5 см, 6 см и 7 см пересекаются в точке о. найдите расстояние от точки о до прямых, содержащих стороны
треугольника. 4. четырехугольник abcd вписан в окружность. известно, что угол abd=30*, угол acb=30*, угол bdc=20*. найти углы четырехугольника abcd.

Viktor0707 Viktor0707    2   28.02.2019 10:10    6

Ответы
Piragovicch Piragovicch  23.05.2020 16:51

1. Соединим середины сторон всеми возможными Ромб ABCD, в него вписан (как легко убедиться) прямоугольник MKLN, диагонали пересекаются в точке O. Получили 4 маленьких ромба: AMON, MBKO, OKCL, NOLD. В каждом из этих ромбов часть прямоугольника равна половине площади ромба. Отсюда площадь прямоугольника равна половине площади ромба, т.е. S/2.

ответ: S/2.

2. Углы AA1B и AA1C опираются на диаметры, а значит они равны по 90 градусов каждый. АА1 перпендикулярно А1В и А1С, значит, А1В и А1С параллельны, а т.к. они проходят через одну и ту же точку, то они совпадают. Значит, точки В, А1, С лежат на одной прямой.

ответ: 90, 90.

3. Перпендикуляры из точки О равны по одной третьей каждой высоты треугольника(теорема про пропорциональные отрезки). Найдём высоты треугольника.

Есть высота АН. Пусть ВН=х, а СН=6-х.

Из теоремы Пифагора:

25-х2=49-36+12х-х2;

12х=12;

х=1;

АН=2кор(6);

ВН=12кор(6)/7;

СН=12кор(6)/5.

ответ: 2кор(6); 12кор(6)/7; 2,4кор(6).

4. Угол ВСД=60, т.к. угол АСД=АВД=30(углы, оп. на одну дугу, равны.)

Аналогично угол АДС=50.

Углы СВД и САД равны. И равны они по:

(360-30*4-20*2)/2=100 градусов.

Значит, угол АВС=130, угол ВАД=120.

ответ: 130, 60, 50, 120. 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия