1)основание прямой призмы - ромб площадь которого 24 см^2. найдите длину бокового ребра, если площади диагональны сечений 16 см^2 и 12 см^2. 2)высота цилиндра 20 дм, радиус основания 15 дм. найдите площадь сечения, проведённого параллельно оси цилиндра на расстояние 9 дм от неё. 3)найдите площадь сечения конуса плоскостью, проходящей через две образующие угол между которыми 30°, если высота конуса 4 см, а его радиус основания 3 см. , всё плохо с : с

lololka125 lololka125    3   26.06.2019 00:10    3

Ответы
tamilyamehtiev tamilyamehtiev  20.07.2020 23:12
1.Обозначим:Sр = 24 см² - площадь ромбаS₁ = 16 см² - площадь большего диагонального сечения (сечение проходит через большие диагонали ромба верхнего и нижнего оснований и ребра призмы, соединяющие концы этих диагоналей)S₂ = 12 см² - площадь меньшего диагонального сечения (сечение проходит через меньщие диагонали ромба верхнего и нижнего оснований и ребра призмы, соединяющие концы этих диагоналей)d₁ - большая диагональ ромбаd₂ - меньшая диагональ ромбаh - ребро призмыS₁=d₁·h    (1)S₂=d₂·h    (2)Sр=d₁·d₂/2  (3)S₁/S₂=d₁·h/(d₂·h)S₁/S₂=d₁/d₂,  => d₁=S₁·d₂/S₂ (4)Подставим (4) в (3)Sр=S₁·d₂²/(2·S₂), => d₂=√(2·S₂·Sр/S₁)  (5)Из (5) найдемd₂=√(2·24·12/16)=6Из (2) найдем длину бокового ребра:h=S₂/d₂=12/6=2 (см) ответ: 2 см
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия