1. найти центр окружности, проходящей через точку (-4,2) и касающейся оси ох в точке (2,0). 2. найти центр и радиус окружности, проходящей через точки (6,0) и (24,0) и касающейся оси оу. 3. найти углы, a1, a2, a3 образуемые вектором {6,2,9} с плоскостями координат oyz, ozx, oxy. кто знает, как решать это ? : )
окружность касается оси ОХ в точке (2; 0) =>
радиус окружности _|_ оси ОХ в точке (2; 0) и окружность через эту точку проходит)))
и, если Вы посмотрите на плоскость, то станет очевидно, что окружность расположена над осью ОХ (для этого и дана была вторая точка...)))
абсцисса центра окружности х=2
ордината центра окружности у=r
осталось найти радиус из уравнения окружности...
(x-x0)^2 + (y-y0)^2 = r^2
(-4-2)^2 + (2-r)^2 = r^2
36+4 - 4r + r^2 = r^2
r=10
координаты центра окружности (2; 10)
аналогично во второй задаче ---начните строить...
окружность касается оси ОУ --- радиус перпендикулярен в этой точке...
нарисуйте центр окружности примерно, пока не зная координат...
но известны координаты двух точек на оси ОХ, через которые проходит окружность, а это значит, что соединив нарисованный центр с этими точками, мы нарисуем радиусы окружности...
получится равнобедренный треугольник...
из него станет очевидно, что радиус окружности = 15
репетитору большой привет)))