.(1)даны точки к(2; 1),м(0; 5)р(-1; -3)т(-3$1)/ а)докажите что км=рт. б)вычеслите координаты векторатк+1/2км. в)вычеслите обспалютною велечину вектора рт. 2)вычеслите коинуус угла между векторами ткирт заданым в 1. 3)найдите значение а
прикотором векторы м(а; -1,2)и к (-8; 6)коллинеарны. 4)начертите параллелограмм авсд. точки к и м-середины его строн адидс соответствено. выразить вектор мк через векторы адиав. помгите .=)).
Вектор PT{Xt-Xp;Yt-Yp} или PT{-2;4}, |PT|=√((-2)²+4²) = 2√5.
Векторы называются равными, если они лежат на одной или параллельных прямых; их направления совпадают и длины равны.
Сонаправленные вектора, это вектора, координаты которых пропорциональны и коэффициент пропорциональности ПОЛОЖИТЕЛЕН.
Xkm/Xpt=-2/-2 = 1, Ykm/Ypt=4/4=1
Векторы равны, так как они сонаправлены и модули их равны.
б) Координаты вектора ТК{Xk-Xt;Yk-Yt} или TK{5;0}.
Координаты вектора (1/2)КM{(Xm-Xk)/2;(Ym-Yk)/2} или (1/2)КM={-1;2}.
Координаты вектора (ТК+1/2КМ)={5+(-1);0+2} = {4;2}.
в) Модуль вектора РТ: |РТ|=√((Xt-Xp)²+(Yt-Yp)²)=√((-2)²+(4)²)=2√5.
2. cosα=(Xtk*Xpt+Ytk*Ypt)/(|TK|*|PT|)=(5*(-2)+0*4)/(5*2√5)≈ -0,447.
3. Два вектора коллинеарны, если отношения их координат равны.
a/-8 =-1,2/6 =-1/5 => a=40.
4. Вектор КМ=KD+DM по правилу треугольника.KD=(1/2)AD, DM=(1/2)DC.
КМ=(1/2)*(AD+DC)
MK= -KM, DC=AB.
MK=-(1/2)*(AD+AB).