предположим, что тело движется по окружности с постоянной скоростью. тогда тангенциальное ускорение отсутствует и полное ускорение (равное центростремительному) направлено по радиусу к центру окружности. видим, что в проекции на ось X ускорение присутствует, в проекции на ось Y - нет
при проекции сил на оси здесь может возникнуть проблема только с силой упругости. смотрим на угол, который образован линией действия силы упругости и вертикалью. этот угол равен α (как накрест лежащий при двух параллельных и секущей)
чтобы разложить вектор силы упругости на составляющие по осям, необходимо опустить перпендикуляры из его конца на оси. получатся две составляющие Fx и Fy
рассмотрим cosα:
cosα = Fy/F → Fy = F cosα
рассмотрим sinα:
sinα = Fx/F → Fx = F sinα
можно рассуждать проще. если составляющая силы является прилежащей по отношению к углу, то берете cosα. если противолежащей, то sinα
теперь нетрудно записать 2 закон Ньютона в проекции на оси:
предположим, что тело движется по окружности с постоянной скоростью. тогда тангенциальное ускорение отсутствует и полное ускорение (равное центростремительному) направлено по радиусу к центру окружности. видим, что в проекции на ось X ускорение присутствует, в проекции на ось Y - нет
при проекции сил на оси здесь может возникнуть проблема только с силой упругости. смотрим на угол, который образован линией действия силы упругости и вертикалью. этот угол равен α (как накрест лежащий при двух параллельных и секущей)
чтобы разложить вектор силы упругости на составляющие по осям, необходимо опустить перпендикуляры из его конца на оси. получатся две составляющие Fx и Fy
рассмотрим cosα:
cosα = Fy/F → Fy = F cosα
рассмотрим sinα:
sinα = Fx/F → Fx = F sinα
можно рассуждать проще. если составляющая силы является прилежащей по отношению к углу, то берете cosα. если противолежащей, то sinα
теперь нетрудно записать 2 закон Ньютона в проекции на оси:
X: F sinα = m a(n)
Y: F cosα - mg = 0