Вычислить радиус дуги окружности, по которой движется ион Li+3 в магнитном поле с индукцией В=0,01 Тл со скоростью, которую ион приобрел пред тем, как влететь в магнитное поле, за счет прохождения ускоряющей разности потенциалов 5 кВ. желательно с рисунком

dasausakova526 dasausakova526    3   02.07.2020 10:54    0

Ответы
sobkevichbozhep08t40 sobkevichbozhep08t40  15.10.2020 15:09

1,56 м

Объяснение:

Сила Лоренца, действующая на ион Li³⁺ сообщает ему центростремительное ускорение, по второму закону Ньютона

qvB=ma_c=m\frac{v^2}{R}

qB=m\frac{v}{R}

Откуда радиус

R=\frac{mv}{qB}

Скорость иона можно найти, приравняв кинетическую энергию им приобретенную к работе поля при прохождении ускоряющей разности потенциалов

\frac{mv^2}{2} =qU

v=\sqrt{\frac{2qU}{m} }

Окончательно

R=\frac{1}{B} \sqrt{\frac{2Um}{q} }

Возьмем самый стабильный изотоп  ₃⁷Li, его заряд равен трем элементарным, а масса равна m=3m(p)+4m(n)=(3*1.673+4*1.675)*10⁻²⁷ кг= 11,72*10⁻²⁷ кг. Рассчитываем

R=\frac{1}{0.01}\sqrt{\frac{2*5000*11.72*10^-^2^7}{3*1.6*10^-^1^9} }=1.56 м.


Вычислить радиус дуги окружности, по которой движется ион Li+3 в магнитном поле с индукцией В=0,01 Т
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Физика