Воду и глицерин одинаковой массы по 550 г нагревают в двух одинаковых сосудах, теплоёмкость которых 825 Дж/(кг °C) До какого значения поднялась температура глицерина, если начальная температура обеих жидкостей была равна 25 °С и им передали одинаковое количество теплоты? При этом в сосуде осталось 478 г воды. Удельная теплоёмкость глицерина 2440 Дж/(кг • °C), удельная теплота парообразования воды 2,3 • 106 Дж/кг.
Q_воды = m_воды * c_воды * ΔT_воды
Q_глицерина = m_глицерина * c_глицерина * ΔT_глицерина
Где:
Q_воды - количество переданной теплоты воде
Q_глицерина - количество переданной теплоты глицерину
m_воды - масса воды
m_глицерина - масса глицерина
c_воды - удельная теплоемкость воды
c_глицерина - удельная теплоемкость глицерина
ΔT_воды - изменение температуры воды
ΔT_глицерина - изменение температуры глицерина
Мы знаем, что масса воды составляет 478 г, а общая масса воды и глицерина равна 550 г. Поэтому масса глицерина равна 550 г - 478 г = 72 г.
Начальная температура и объем переданной теплоты одинаковы для обеих жидкостей, поэтому начальная температура и температура изменения (ΔT_воды = ΔT_глицерина) будут одинаковыми, и мы их обозначим как ΔT.
Теперь мы можем записать уравнение для воды и глицерина:
Q_воды = 478 г * 825 Дж/(кг°C) * ΔT
Q_глицерина = 72 г * 2440 Дж/(кг•°C) * ΔT
Теперь нам нужно найти ΔT. Для этого мы положим, что количество переданной теплоты воде равно количеству переданной теплоты глицерину:
Q_воды = Q_глицерина
478 г * 825 Дж/(кг°C) * ΔT = 72 г * 2440 Дж/(кг•°C) * ΔT
Как видно, ΔT находится в обеих частях уравнения, поэтому мы можем его сократить:
478 г * 825 Дж/(кг°C) = 72 г * 2440 Дж/(кг•°C)
И теперь мы можем решить эту пропорцию:
478 г * 825 Дж/(кг°C) / 72 г = 2440 Дж/(кг•°C)
Подставив числа в эту формулу, мы найдем значение ΔT:
(478 г * 825 Дж/(кг°C)) / 72 г = 5500 Дж/(кг•°C)
Таким образом, температура глицерина поднялась на 5500°C.