Шарик массой 250 г, летящий со скоростью 3,4 м/с под углом 25 к горизонту, ударяется о гладкую стену. определите импульс p, полученный стеной вследствие удара
Для решения данной задачи, нам понадобятся следующие физические законы:
1) Закон сохранения импульса: сумма начальных импульсов тел до удара равна сумме конечных импульсов после удара.
2) Закон сохранения энергии: сумма начальной кинетической энергии иразности потенциальных энергий тел до удара равна сумме конечной кинетической энергии и разности потенциальных энергий после удара.
Шарик имеет падающее движение под углом к горизонту, поэтому его горизонтальная и вертикальная составляющие импульса можно представить следующим образом:
p_x = m * v * cosθ
p_y = -m * v * sinθ
где m - масса шарика, v - скорость шарика, θ - угол падения.
Поскольку импульс - векторная величина, для определения модуля импульса нужно сложить квадраты его горизонтальной и вертикальной составляющих, а затем извлечь корень из суммы их квадратов:
|p| = sqrt(p_x^2 + p_y^2)
Теперь рассмотрим данную задачу.
Учитывая данную информацию, раскроем все необходимые значения:
m = 0,25 кг (250 г)
v = 3,4 м/с
θ = 25°
Выполним вычисления:
p_x = m * v * cosθ
p_x = 0,25 * 3,4 * cos25°
p_x ≈ 0,25 * 3,4 * 0,906
p_x ≈ 0,76725 кг * м/с
1) Закон сохранения импульса: сумма начальных импульсов тел до удара равна сумме конечных импульсов после удара.
2) Закон сохранения энергии: сумма начальной кинетической энергии иразности потенциальных энергий тел до удара равна сумме конечной кинетической энергии и разности потенциальных энергий после удара.
Шарик имеет падающее движение под углом к горизонту, поэтому его горизонтальная и вертикальная составляющие импульса можно представить следующим образом:
p_x = m * v * cosθ
p_y = -m * v * sinθ
где m - масса шарика, v - скорость шарика, θ - угол падения.
Поскольку импульс - векторная величина, для определения модуля импульса нужно сложить квадраты его горизонтальной и вертикальной составляющих, а затем извлечь корень из суммы их квадратов:
|p| = sqrt(p_x^2 + p_y^2)
Теперь рассмотрим данную задачу.
Учитывая данную информацию, раскроем все необходимые значения:
m = 0,25 кг (250 г)
v = 3,4 м/с
θ = 25°
Выполним вычисления:
p_x = m * v * cosθ
p_x = 0,25 * 3,4 * cos25°
p_x ≈ 0,25 * 3,4 * 0,906
p_x ≈ 0,76725 кг * м/с
p_y = -m * v * sinθ
p_y = -0,25 * 3,4 * sin25°
p_y ≈ -0,25 * 3,4 * 0,423
p_y ≈ -0,35535 кг * м/с
Теперь суммируем квадраты горизонтальной и вертикальной составляющих:
|p| = sqrt(p_x^2 + p_y^2)
|p| = sqrt((0,76725)^2 + (-0,35535)^2)
|p| ≈ sqrt(0,59094930625 + 0,12619882225)
|p| ≈ sqrt(0,7171481285)
|p| ≈ 0,846988265 кг * м/с
Таким образом, импульс, который получает стена от удара шарика, равен примерно 0,846988265 кг * м/с.