Решить если m=120г, n=3.0 ,l=1.8 м g=10 как найти жесткость пружины))

lolEzzGG lolEzzGG    2   13.06.2019 10:20    1

Ответы
TheDrever TheDrever  02.10.2020 01:02
Период колебаний пружинного маятника 

T1=2 \pi \sqrt{ \frac{m}{k} }

связан с частотой колебаний 

T1 = \frac{1}{V1 }

Тогда

T1=2 \pi \sqrt{ \frac{m}{k} } = \frac{1}{V1} \\ \\ V1= \frac{1}{2 \pi } \sqrt{ \frac{k}{m} }

Аналогично период и частота колебаний математического маятника

T2=2 \pi \sqrt{ \frac{l}{g} } = \frac{1}{V2} \\ \\ V2= \frac{1}{2 \pi } \sqrt{ \frac{g}{l} }

По условию частота колебаний пружинного маятника в 3 раза больше частоты колебаний математического маятника

V1 = 3*V2 \\ \\ \frac{1}{2 \pi } \sqrt{ \frac{k}{m} } = 3*\frac{1}{2 \pi } \sqrt{ \frac{g}{l} }

Отсюда найдём жёсткость пружины k

\frac{1}{2 \pi } \sqrt{ \frac{k}{m} } = 3*\frac{1}{2 \pi } \sqrt{ \frac{g}{l} } \\ \\ \sqrt{ \frac{k}{m} }=3*\sqrt{ \frac{g}{l} } \\ \\ \frac{k}{m}=9*\frac{g}{l} \\ \\ k= \frac{9mg}{l}

Подставив данные значения, получим

k = 6 Н/м
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Физика