Добрый день! Я рад выступить в роли вашего школьного учителя и помочь вам разобраться с этим вопросом.
Для решения этой задачи мы можем использовать закон линейного расширения твердых тел. Этот закон говорит о том, что при изменении температуры тело меняет свои размеры пропорционально разности температур.
Известно, что при температуре 283 к диаметр отверстия составляет 8 мм. Давайте обозначим этот диаметр как D1, а температуру как T1.
Также нам дана другая температура - 673 к. Обозначим эту температуру как Т2.
Нашей задачей является определить диаметр отверстия при 673 к. Обозначим его как D2.
Для решения этой задачи можем воспользоваться следующей формулой:
(D2 - D1) / D1 = α * (T2 - T1),
где α - коэффициент линейного расширения.
В данной задаче предполагается, что мы работаем с стальным диском. Коэффициент линейного расширения для стали примерно равен 12 * 10^(-6) 1/к.
Теперь, подставим известные значения в формулу:
(D2 - 8 мм) / 8 мм = 12 * 10^(-6) 1/к * (673 к - 283 к).
Первым делом рассчитаем разность температур:
ΔT = 673 к - 283 к = 390 к.
Теперь, подставим эту разность в формулу:
(D2 - 8 мм) / 8 мм = 12 * 10^(-6) 1/к * (390 к).
Теперь решим это уравнение, чтобы найти D2.
Умножим обе части уравнения на 8 мм:
D2 - 8 мм = 12 * 10^(-6) 1/к * 390 к * 8 мм.
D2 - 8 мм = 12 * 10^(-6) * 390 * 8.
Рассчитаем правую часть уравнения:
D2 - 8 мм = 0.00372 мм.
Теперь добавим 8 мм к обеим сторонам уравнения:
D2 = 8 мм + 0.00372 мм.
D2 = 8.00372 мм.
Таким образом, диаметр отверстия в стальном диске при температуре 673 к составит примерно 8.00372 мм.
Важно отметить, что в данной задаче мы использовали упрощенное значение коэффициента линейного расширения для стали. В реальных условиях этот коэффициент может варьироваться в зависимости от конкретного типа стали.
Для решения этой задачи мы можем использовать закон линейного расширения твердых тел. Этот закон говорит о том, что при изменении температуры тело меняет свои размеры пропорционально разности температур.
Известно, что при температуре 283 к диаметр отверстия составляет 8 мм. Давайте обозначим этот диаметр как D1, а температуру как T1.
Также нам дана другая температура - 673 к. Обозначим эту температуру как Т2.
Нашей задачей является определить диаметр отверстия при 673 к. Обозначим его как D2.
Для решения этой задачи можем воспользоваться следующей формулой:
(D2 - D1) / D1 = α * (T2 - T1),
где α - коэффициент линейного расширения.
В данной задаче предполагается, что мы работаем с стальным диском. Коэффициент линейного расширения для стали примерно равен 12 * 10^(-6) 1/к.
Теперь, подставим известные значения в формулу:
(D2 - 8 мм) / 8 мм = 12 * 10^(-6) 1/к * (673 к - 283 к).
Первым делом рассчитаем разность температур:
ΔT = 673 к - 283 к = 390 к.
Теперь, подставим эту разность в формулу:
(D2 - 8 мм) / 8 мм = 12 * 10^(-6) 1/к * (390 к).
Теперь решим это уравнение, чтобы найти D2.
Умножим обе части уравнения на 8 мм:
D2 - 8 мм = 12 * 10^(-6) 1/к * 390 к * 8 мм.
D2 - 8 мм = 12 * 10^(-6) * 390 * 8.
Рассчитаем правую часть уравнения:
D2 - 8 мм = 0.00372 мм.
Теперь добавим 8 мм к обеим сторонам уравнения:
D2 = 8 мм + 0.00372 мм.
D2 = 8.00372 мм.
Таким образом, диаметр отверстия в стальном диске при температуре 673 к составит примерно 8.00372 мм.
Важно отметить, что в данной задаче мы использовали упрощенное значение коэффициента линейного расширения для стали. В реальных условиях этот коэффициент может варьироваться в зависимости от конкретного типа стали.