На орбите какой высоты над Землей движется спутник, если его скорость в 2 раза меньше первой космической для Земли? Объясните подробно

Katya124354 Katya124354    2   28.02.2021 13:27    0

Ответы
blurryriden blurryriden  30.03.2021 13:30

Дано:

v = 0,5*V(1-я косм.)

h - ?

Есть формула для центростремительного ускорения:

a = V²/R

Вместо "a" используем ускорение свободного падения:

g = V²/R

Выражая из этой формулы V, получим формулу для первой космической скорости:

V² = gR

V = √(gR), где g - это примерно 9,8 м/с², а R - радиус Земли.

По условию скорость спутника в 2 раза меньше первой космической:

v = 0,5*V(1-я косм.), значит:

v = 0,5*√(gR) - поместим 0,5 под корень:

v = √(0,5²*gR)

C другой стороны есть формула закона всемирного тяготения:

Fтяг = GMm/R², где G - гравитационная постоянная, M - масса Земли, а R - её радиус. Приравняем эту формулу к формуле силы тяжести (т.к. обе, по сути, описывают одно и то же явление, хоть сила тяжести и является частным случаем силы тяготения):

Fтяг = Fтяж

GMm/R² = mg - разделим обе части на "m"

GM/R² = g - это уравнение для "g". Подставим его в выражение для скорости спутника:

v = √(0,5²*gR) = √(0,5²*(GM/R²)R) = √(0,5²*GM/R) - очевидно, что ни к G, ни к M значение 0,5² не может относится, т.к. G - это постоянная, а M - масса Земли, которая вряд ли ни с того ни с сего уменьшилась. Тогда остаётся только радиус. Но земной радиус тоже не может уменьшаться или увеличиваться из-за того, что какой-то спутник летает вокруг Земли. Поэтому вернёмся к формуле для "g":

g = GM/R² - это g, которое у самой поверхности Земли. Чем дальше от поверхности, тем больше становится расстояние, и тем меньше становится g. Получается, что для тел, которые находятся на уже значительном расстоянии от Земли, один лишь радиус использовать нельзя - надо использовать сумму радиуса и высоты:

g = GM/(R + h)² - именно эту формулу мы используем для выражения скорости спутника:

g = v²/(R + h)

v² = g*(R + h)

v = √(g*(R + h)) = √((GM/(R + h)²)*(R + h)) = √(GM/(R + h))

и приравняем её к формуле для половины первой космической скорости, только теперь уже не будем помещать 0,5 под корень:

√(GM/(R + h)) = 0,5√(GM/R) - теперь можно выразить h и найти значение:

√(GM/(R + h)) = 0,5√(GM/R)

√(GM)/√(R + h) = 0,5√(GM)/√R | : √(GM)

1/√(R + h) = 0,5/√R

√(R + h) = 1/(1/(2√R)) | ² - возведём обе части в квадрат

R + h = 4R

h = 4R - R = 3R

Радиус Земли примерно равен 6400 км, тогда:

h = 3R = 3*6400 = 19200 км или 1,92*10^7 м

Проверим:

Масса Земли примерно равна 6*10^(24) кг, тогда:

v = √(GM/(R + h)) = √(6,67*10^(-11)*6*10^(24) / (6,4*10^6 + 1,92*10^7)) = √(6,67*6*10^(13) / (6,4*10^6 + 19,2*10^6)) = √(40,02*10^(13) / (10^6*(6,4 + 19,2))) = √(40,02*10^7/25,6) = 3953,835163 = 3954 м/с

V(1-я косм.) = 0,5√(GM/R) = 0,5*√(6,67*10^(-11)*6*10^(24)/6,4*10^6) = 0,5*√(40,02*10^7/6,4) = 0,5*7907,6703... = 0,5*7908 = 3954 м/с

Всё сходится.

ответ: 19200 км или 1,92*10^7 м.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Физика