На дне цилиндра, заполненного воздухом при нормальных условиях, лежит шарик радиуса r = 2 см массой m = 5 г . во сколько раз нужно увеличить давление воздуха, чтобы шарик мог взлететь? воздух считать идеальным газом, его температура поддерживается постоянной.
Fa = Fтяж,
p(в) g V = m g.
• объем шарика V равен V = (4/3) π r³
• плотность воздуха p(в) можно выразить из закона Менделеева-Клапейрона (разделите на объем обе его части) p(в) = (P M)/(R T0), где P - давление, при котором шарик поднимается, T0 - его температура вначале (соответственно, и в конце тоже, так как она постоянна)
расписав объем и плотность, получаем:
P = (3 R T0 m)/(4 π r³ M).
2) теперь можем найти отношение P/P0. заметим, что давление при нормальных условиях равно P0 = 10^(5) Па, а абсолютная температура T0 = 273 K. молярная масса воздуха M = 29 г/моль
P/P0 = (3 R T0 m)/(4 π r³ M P0).
P/P0 ≈ 116.8