Радиан (от лат. radius — луч, радиус) — основная единица измерения плоских углов в математике.
Один радиан равен центральному углу окружности, длина дуги которого равна радиусу этой окружности:Таким образом, величина полного угла равна 2π (два Пи) радиан, так как длина окружности - это 2π (два Пи) радиусов.
Радиан - это безразмерная величина, поскольку отражает соотношение длины дуги окружности к длине радиуса.
Радианной мере угла можно поставить в соответствие меру угла в градусах. Эту зависимость можно выразить следующими формулами:
Конкретные наиболее часто встречающиеся величины углов выражаются следующим образом в радианной и градусной мере:
Один радиан равен центральному углу окружности, длина дуги которого равна радиусу этой окружности:Таким образом, величина полного угла равна 2π (два Пи) радиан, так как длина окружности - это 2π (два Пи) радиусов.
Радиан - это безразмерная величина, поскольку отражает соотношение длины дуги окружности к длине радиуса.
Радианной мере угла можно поставить в соответствие меру угла в градусах. Эту зависимость можно выразить следующими формулами:
Конкретные наиболее часто встречающиеся величины углов выражаются следующим образом в радианной и градусной мере:
Угол в радианах Угол в градусах 0 0 π/6
(одна шестая Пи) 30° π/4
(одна четверть Пи) 45° π/3
(одна треть Пи) 60° π/2
(Пи пополам) 90° π
(Пи) 180° 2π
(два Пи) 360° π/180
(Пи, делить на 180) 1°