Лестница–стремянка состоит из двух одинаковых по размерам половинок, соединенных вверху шарнирно. массы половинок разные и равны m1 и m2. половинки развели на угол 2α и поставили на гладкий пол, а чтобы половинки не разъезжались, их внизу связали веревкой. найти силу натяжения веревки.
стремянка в равновесии значит
(m1+m2)*a=F=0
или
m1*g - N1 + m2*g - N2 =0
рассмотрим сумму моментов всех сил, действующих на пол-стремянки относительно оси, проходящей через точку соединения двух частей
лесенка не вращается значит сумма моментов равна нулю
m1*g*L/2*sin(alpha)+T*L*cos(alpha)-N1*L*sin(alpha)=0
аналогично для другой половинки
m2*g*L/2*sin(alpha)+T*L*cos(alpha)-N2*L*sin(alpha)=0
имеем систему
m1*g - N1 + m2*g - N2 =0
m1*g*L/2*sin(alpha)+T*L*cos(alpha)-N1*L*sin(alpha)=0
m2*g*L/2*sin(alpha)+T*L*cos(alpha)-N2*L*sin(alpha)=0
m1*g + m2*g =N1+ N2
m1*g/2*sin(alpha)+T*cos(alpha)=N1*sin(alpha)
m2*g/2*sin(alpha)+T*cos(alpha)=N2*sin(alpha)
сложим два последних уравнения и выделим в сумме (N1+ N2)
m1*g/2*sin(alpha)+T*cos(alpha)+m2*g/2*sin(alpha)+T*cos(alpha) =N1*sin(alpha)+N2*sin(alpha)=(N1+N2)*sin(alpha)=(m1*g + m2*g )*sin(alpha)
m1*g/2*sin(alpha)+2*T*cos(alpha)+m2*g/2*sin(alpha) =(m1*g + m2*g )*sin(alpha)
2*T*cos(alpha)=(m1*g + m2*g )*sin(alpha)-m1*g/2*sin(alpha)-m2*g/2*sin(alpha)
T*cos(alpha)=(m1 + m2)*g*sin(alpha)/4
T=(m1 + m2)*g*tg(alpha)/4 - это ответ