Камень брошеный вертикально вверх оказался на высоте h=10м через t=4 с определите время полета камня до самой высокой точки траектории сопротивлением воздуха пренебречь ускорение свободного падения g=10м/с^2
Максимальная высота: H=g*t₁²/2 Здесь t₁ - время подъема до верхней точки. t₁ = √(2*H/g) Время падения от самой высокой точки до высоты 10 метров: t₂=√(2*(H-10)/g)
По условию сумма этих времен и равна 4: 4=√(2*H/g)+√(2*(H-10)/g) Сократив на √(2/g) получаем: √H + √(H-10) ≈ 9 Решая это иррациональное уравнение, получаем ДВА корня: максимальная высота, если камень поднимается вверх, вторая - когда камень падает: H₁ ≈ 29 м H₂ ≈ 97 м
H=g*t₁²/2
Здесь t₁ - время подъема до верхней точки.
t₁ = √(2*H/g)
Время падения от самой высокой точки до высоты 10 метров:
t₂=√(2*(H-10)/g)
По условию сумма этих времен и равна 4:
4=√(2*H/g)+√(2*(H-10)/g)
Сократив на √(2/g) получаем:
√H + √(H-10) ≈ 9
Решая это иррациональное уравнение, получаем ДВА корня: максимальная высота, если камень поднимается вверх, вторая - когда камень падает:
H₁ ≈ 29 м
H₂ ≈ 97 м