Два точечных заряда q1=6 мкКл и q2=2 мкКл, находятся на расстоянии а=60 см друг от друга. Какую работу необходимо свершить внешним силам, чтобы уменьшить расстояние между зарядами вдвое?​

petuhovoleg22 petuhovoleg22    2   25.11.2020 20:52    86

Ответы
alinapopova997 alinapopova997  25.01.2024 05:48
Добрый день! Для того чтобы решить эту задачу, нам потребуется использовать понятие электростатической работы.

Электростатическая работа - это работа, которую необходимо совершить внешним силам для перемещения заряда в поле другого заряда.

Для начала, давайте найдем электростатическую силу, действующую между зарядами. Мы можем найти эту силу, используя формулу Кулона:

F = k * |q1 * q2| / r^2

где F - сила в ньютонах, k - постоянная Кулона (k = 8.99 x 10^9 Н * м^2 / Кл^2), q1 и q2 - значения зарядов в колюмбах, r - расстояние между зарядами в метрах.

Подставляя значения зарядов и расстояния в формулу Кулона, получаем:

F = (8.99 x 10^9 Н * м^2 / Кл^2) * |6 x 10^-6 Кл * 2 x 10^-6 Кл| / (0.6 м)^2
F = (8.99 x 10^9) * 12 x 10^-12 / 0.36
F ≈ 299 x 10^-3 Н
F ≈ 0.299 Н

Теперь, когда у нас есть сила между зарядами, мы можем найти работу, которую нужно совершить для уменьшения расстояния между зарядами вдвое.

Работу можно рассчитать по формуле:

W = F * d

где W - работа в джоулях, F - сила в ньютонах, d - перемещение или изменение расстояния в метрах.

В нашем случае, нам нужно уменьшить расстояние между зарядами вдвое, или изменить его на половину. Изначальное расстояние между зарядами составляет 60 см = 0.6 метра. Поэтому, изменение расстояния составит:

d = (0.5 * 0.6) м
d = 0.3 метра

Подставляя значения в формулу работы, получаем:

W = 0.299 Н * 0.3 м
W ≈ 0.0897 Дж
W ≈ 89.7 мДж

Таким образом, чтобы уменьшить расстояние между зарядами вдвое, необходимо совершить работу, примерно равную 89.7 миллиджоулям.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Физика