Длина круговой дорожки стадиона 470 метров. два велосипедиста ездят по дорожке во встречных направлениях со скоростями 12 м/с и 9 м/с. через какой наименьший промежуток времени после встречи в некотором месте дорожки они снова встретятся в этом месте?
Время за которое первый велосипедист вернется в эту начальную точку 470/9 с, время за которое второй велосипедист вернется в эту точку 470/12.
Теперь нужно найти промежуток времени, в который времена одного оборота первого и времена одного оборота второго уложаться целое число раз, то есть найти такие числа m и n, чтобы выполнялось условие:
(470/9)*m = (470/12)*n
откуда m/n = 3/4 или m=3, n=4
Это означает, что первый велосипедист сделает 3 полных оборота, а второй 4 полных оборота когда они опять встретятся в первоначальной точке. На это уйдет (470/9)*3 = 156 целых и 2/3 секудны, или 2 минуты, 36 целых и 2/3 секунды.