Частота колебаний пружинного маятника увеличилась в 2 раза. Как при этом изменилась его масса ответ объясните и можно с решеним

vera186 vera186    1   26.11.2020 21:39    202

Ответы
mooziviycom mooziviycom  10.01.2024 09:13
Чтобы ответить на данный вопрос, нам нужно вспомнить основное уравнение для периода колебаний пружинного маятника:

T = 2π√(m/k),

где T - период колебаний (время, за которое маятник совершает одно полное колебание),
m - масса маятника, и
k - жесткость пружины.

Мы знаем, что частота (f) является обратной величиной периода: f = 1/T. Тогда мы можем записать:

f = 1/T = 1/(2π√(m/k)).

Далее, мы предполагаем, что частота увеличилась в 2 раза. Поэтому новая частота (f') равна двум исходным частотам (f):

f' = 2f.

Таким образом, мы можем записать это в уравнении:

2f = 1/(2π√(m/k)).

Давайте теперь решим это уравнение для массы маятника (m).

Сначала, домножим оба выражения на 2π:

4πf = 1/√(m/k).

Далее, возведем оба выражения в квадрат:

(4πf)^2 = (1/√(m/k))^2.

Simplifying,

16π^2f^2 = 1/(m/k).

Inverting both sides of the equation, we get:

(m/k) = 1/(16π^2f^2).

Finally, we can rearrange the equation to solve for the mass (m):

m = k/(16π^2f^2).

In conclusion, the mass of the spring pendulum is directly proportional to the square of the period (or inversely proportional to the square of the frequency). When the frequency of the oscillations is doubled, the mass of the pendulum remains the same, as it is not affected by the change in frequency.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Физика