Соберем экспериментальную установку. Установка состоит из шарика на нити. Нить продернута через ластик. Это сделано для того, чтобы можно было регулировать его длину. Обратите внимание, что сам ластик укреплен в лапке штатива.Для измерения длины будем использовать линейку и секундомер. Итак, мы отсчитали 30 колебаний, и время, которое мы зарегистрировали, оказалось равным 13,2 с.Заносим эти данные в таблицу и можем приступать к расчетам периода и частоты колебаний. Следующий шаг: увеличиваем длину маятника до 20 см. И весь эксперимент повторяем сначала. Вновь результаты заносим в таблицу. Итак, проведя наши эксперименты, мы получили конечные результаты и занесли их в таблицу. Период колебаний: (с). Частота колебаний: (Гц), где – это время, а – количество колебаний, совершенных за время . Обратите внимание: когда длина маятника составляла 5 см, 30 колебаний за время 13,2 с. Период колебаний составил , а частота . Следующий результат: те же 30 колебаний, но длина маятника была уже 20 см. В этом случае увеличилось время колебаний – 26,59 с, а период колебаний составил . Частота уменьшилась почти в 2 раза, обратите внимание: . Если мы посмотрим на третий результат, то увидим, что длина маятника еще больше, период стал больше, а частота уменьшилась еще на некоторое значение. Следующий, четвертый и пятый, постарайтесь посчитать сами. Обратите внимание на то, как при этом будет меняться период и частота колебаний нашего нитяного маятника. Для 4 и 5 экспериментов посчитайте частоту и период самостоятельно.Для 4 и 5 экспериментов посчитайте частоту и период самостоятельно.
Величина/№
1
2
3
4
5
Длина (см)
5
20
45
80
125
Число колебаний
30
30
30
30
30
Время (с)
13,2
26,59
40,32
52,81
66,21
Период (с)
0,44
0,886
1,344
Частота (Гц)
2,27
1,128
0,744
Табл. 1. Значения частоты и периода для первых трех экспериментов
вывод: с увеличением длины маятника увеличивается период колебаний и уменьшается частота (рис. 4). Хотелось бы, чтобы четвертый и пятый опыты вы проделали сами и убедились, что все действительно так, как мы получили в наших опытах.
Формула для вычисления периода колебания математического маятника: , где – длина маятника, а – ускорение свободного падения.
Соберем экспериментальную установку. Установка состоит из шарика на нити. Нить продернута через ластик. Это сделано для того, чтобы можно было регулировать его длину. Обратите внимание, что сам ластик укреплен в лапке штатива.Для измерения длины будем использовать линейку и секундомер. Итак, мы отсчитали 30 колебаний, и время, которое мы зарегистрировали, оказалось равным 13,2 с.Заносим эти данные в таблицу и можем приступать к расчетам периода и частоты колебаний. Следующий шаг: увеличиваем длину маятника до 20 см. И весь эксперимент повторяем сначала. Вновь результаты заносим в таблицу. Итак, проведя наши эксперименты, мы получили конечные результаты и занесли их в таблицу. Период колебаний: (с). Частота колебаний: (Гц), где – это время, а – количество колебаний, совершенных за время . Обратите внимание: когда длина маятника составляла 5 см, 30 колебаний за время 13,2 с. Период колебаний составил , а частота . Следующий результат: те же 30 колебаний, но длина маятника была уже 20 см. В этом случае увеличилось время колебаний – 26,59 с, а период колебаний составил . Частота уменьшилась почти в 2 раза, обратите внимание: . Если мы посмотрим на третий результат, то увидим, что длина маятника еще больше, период стал больше, а частота уменьшилась еще на некоторое значение. Следующий, четвертый и пятый, постарайтесь посчитать сами. Обратите внимание на то, как при этом будет меняться период и частота колебаний нашего нитяного маятника. Для 4 и 5 экспериментов посчитайте частоту и период самостоятельно.Для 4 и 5 экспериментов посчитайте частоту и период самостоятельно.
Величина/№
1
2
3
4
5
Длина (см)
5
20
45
80
125
Число колебаний
30
30
30
30
30
Время (с)
13,2
26,59
40,32
52,81
66,21
Период (с)
0,44
0,886
1,344
Частота (Гц)
2,27
1,128
0,744
Табл. 1. Значения частоты и периода для первых трех экспериментов
вывод: с увеличением длины маятника увеличивается период колебаний и уменьшается частота (рис. 4). Хотелось бы, чтобы четвертый и пятый опыты вы проделали сами и убедились, что все действительно так, как мы получили в наших опытах.
Формула для вычисления периода колебания математического маятника: , где – длина маятника, а – ускорение свободного падения.
Формула для вычисления частоты колебаний: .