В трапеции ABCD известно, что AD=24, ВС=8, АС=13, BD=5√17. Найдите площадь трапеции

hbkkb hbkkb    1   17.04.2019 00:50    0

Ответы
Luciferiy Luciferiy  17.04.2019 00:50
Решение.
Для нахождения высоты трапеции из вершин меньшего основания B и C опустим на большее основание две высоты. Поскольку трапеция неравнобокая - то обозначим длину AM = a, длину  KD = b (не путать с обозначениями в формуле нахождения площади трапеции). Поскольку основания трапеции параллельны, а мы опускали две высоты, перпендикулярных большему основанию, то MBCK - прямоугольник.

Значит
AD = AM+BC+KD
a + 8 + b = 24
a = 16 - b

Треугольники DBM и ACK - прямоугольные, так их прямые углы образованы высотами трапеции. Обозначим высоту трапеции через h. Тогда по теореме Пифагора

h2 + (24 - a)2 = (5√17)2
и
h2 + (24 - b)2 = 132

Учтем, что a = 16 - b , тогда в первом уравнении
h2 + (24 - 16 + b)2 = 425
h2  = 425 - (8 + b)2

Подставим значение квадрата высоты во второе уравнение, полученное по Теореме Пифагора. Получим:
425 - (8 + b)2 + (24 - b)2  = 169
-(64 + 16b + b)2 + (24 - b)2 = -256
-64 - 16b - b2 + 576 - 48b + b2  = -256
-64b = -768
b = 12

Таким образом, KD = 12
Откуда
h2  = 425 - (8 + b)2 = 425 - (8 + 12)2 = 25
h = 5

Найдем площадь трапеции через ее высоту и полусумму оснований
Площадь трапеции, где a b - основания трапеции, h - высота трапеции
S = (24 + 8) * 5 / 2 = 80 см2

Ответ: площадь трапеции равна 80 см2.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Другие предметы