В параллелограмме АВСD проведены перпендикуляры ВЕ и DF к диагонали АС. Докажите, что треугольники BEF и DFE равны.

Марянян Марянян    1   17.04.2019 03:20    1

Ответы
lenova32 lenova32  17.04.2019 03:20
1) Рассмотрим треугольники ABE и CDF.
AB=CD (по свойству параллелограмма).
/BAE=/DCF (т.к. это внутренние накрест-лежащие углы для параллельных BC и AD и секущей AC).
/BEA=/DFC (т.к. оба эти угла прямые по условию).
Если два угла у данных треугольников попарно равны, то и третьи углы равны (по теореме о сумме углов треугольника).
Следовательно треугольники ABE и CDF равны (по второму признаку равенства треугольников). Отсюда следует, что BE=FD
2) Рассмотрим треугольники BFE и DEF.
BE=FD (из пункта 1), EF-общая сторона, /BEF=/DFE (т.к. это прямые углы по условию).
Следовательно треугольники BFE и DEF равны (по первому признаку равенства треугольников).
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Другие предметы