Отрезок BD - диаметр окружности с центром О. Хорда AC делит пополам радиус OB и перпендикулярна к нему. Найдите углы четырёхугольника ABCD и градусные меры дуг AB BC CD и AD. --------- Соединим центр окружности с вершиной А. Отрезок ОА - радиус, МО равен его половине. sin ∠ МАО равен МО:АО=1/2. Это синус 30°∠ МАО=30°, ⇒∠ АОВ=60°. ВО=АО=радиус окружности.⇒ △ АОВ равнобедренный. Сумма углов треугольника 180 градусов. ∠ ОВА=∠ОАВ=(180°-60°):2)=60° ⇒ △ АОВ- равносторонний. Углы ВАD и ВСD опираются на диаметр ⇒ они прямые=90°. ⊿ ВСD и ⊿ВАD -прямоугольные, и ∠СDВ=∠АDВ=180°-(90°-60°)=30° ⊿ ВСD=⊿ВАD. ∠ D=2 ·∠АDВ=2·30°=60° Сумма углов четырехугольника 360° ∠АВС=360°- 2·90°- 60°=120° Градусная мера дуги равна центральному углу, который на нее опирается. На дугу АВ опирается центральный угол АОВ=60°⇒ ее градусная мера 60° На дугу СВ опирается центральный угол СОВ=60°⇒ ее градусная мера 60° В треугольнике САD ∠САD=∠DАС=60° Вписанный угол равен половине градусной меры дуги, на которую опирается. На дугу CD опирается вписанный угол САD=60°⇒ она равна 2·60°=120° На дугу АD опирается вписанный угол АСD=60°⇒ она равна 2·60°=120° ответ: ∠А=С=90° ∠В=120° ∠Д=60° градусные меры дуг AB=60° BC=60° CD=120° AD=120°.
пополам радиус OB и перпендикулярна к нему. Найдите углы
четырёхугольника ABCD и градусные меры дуг AB BC CD и AD.
---------
Соединим центр окружности с вершиной А.
Отрезок ОА - радиус, МО равен его половине.
sin ∠ МАО равен МО:АО=1/2.
Это синус 30°∠ МАО=30°, ⇒∠ АОВ=60°.
ВО=АО=радиус окружности.⇒ △ АОВ равнобедренный.
Сумма углов треугольника 180 градусов.
∠ ОВА=∠ОАВ=(180°-60°):2)=60° ⇒ △ АОВ- равносторонний.
Углы ВАD и ВСD опираются на диаметр ⇒ они прямые=90°.
⊿ ВСD и ⊿ВАD -прямоугольные, и
∠СDВ=∠АDВ=180°-(90°-60°)=30°
⊿ ВСD=⊿ВАD.
∠ D=2 ·∠АDВ=2·30°=60°
Сумма углов четырехугольника 360°
∠АВС=360°- 2·90°- 60°=120°
Градусная мера дуги равна центральному углу, который на нее
опирается.
На дугу АВ опирается центральный угол АОВ=60°⇒ ее градусная мера 60°
На дугу СВ опирается центральный угол СОВ=60°⇒ ее градусная мера 60°
В треугольнике САD ∠САD=∠DАС=60°
Вписанный угол равен половине градусной меры дуги, на которую
опирается.
На дугу CD опирается вписанный угол САD=60°⇒ она равна 2·60°=120°
На дугу АD опирается вписанный угол АСD=60°⇒ она равна 2·60°=120°
ответ:
∠А=С=90°
∠В=120°
∠Д=60°
градусные меры дуг
AB=60°
BC=60°
CD=120°
AD=120°.