Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно 19, а одна из диагоналей ромба равна 76. Найдите углы ромба

nastyagru1 nastyagru1    1   17.04.2019 03:20    5

Ответы
krivobokova45 krivobokova45  17.04.2019 03:20
Рассмотрим треугольник ABO.
По определению, ромб это параллелограмм с равными сторонами, следовательно, на ромб распространяются все свойства параллелограмма.
Тогда, диагонали ромба точкой пересечения делятся пополам (по третьему свойству параллелограмма), т.е. OB=76/2=38
Треугольник ABO - прямоугольный, так как ОА - расстояние до стороны ромба, т.е. образует прямой угол со стороной.
sin∠ABO=AO/BO=19/38=1/2 => ∠ABO=30° ( табличное значение).
Треугольники EBO и CBO равны (по трем сторонам).
Следовательно, ∠EBO=∠CBO=30°
Таким образом, ∠EBC=30°*2=60°
По свойству параллелограмма, ∠EBC=∠EDC=60° и ∠BED=∠BCD
Сумма углов любого четырехугольника равна 360°, следовательно:
∠BED=∠BCD=(360°-(2*60°))=(360°-120°)/2=120°
Ответ: ∠EBC=∠EDC=60° и ∠BED=∠BCD=120°
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Другие предметы