Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=44, BC=24, CF:DF=3:1

He1111p He1111p    3   17.04.2019 03:20    6

Ответы
kamilusmonov kamilusmonov  17.04.2019 03:20
Проведем высоты h1 и h2 как показано на рисунке.
Рассмотрим треугольники CFG и FDJ.
∠CGF=∠FJD=90° (т.к. мы проводили высоты).
∠CFG=∠FDJ (т.к. это соответственные углы).
Следовательно, эти треугольники подобны по первому признаку подобия.
По определению подобных треугольников:
CF/DF=CG/FJ=3/1
Для простоты обозначим:
CG=h1
FJ=h2
SEBCF=(CB+EF)*h1/2
SAEFD=(EF+AD)*h2/2
SABCD=(BC+AD)*(h1+h2)/2
Так сумма площадей этих трапеций равна площади большой трапеции, то запишем:
(CB+EF)*h1/2+(EF+AD)*h2/2=(BC+AD)*(h1+h2)/2
(CB+EF)*h1+(EF+AD)*h2=(BC+AD)*(h1+h2)
(CB+EF)*h1+(EF+AD)*h2=(BC+AD)*h1+(BC+AD)*h2
(CB+EF)*h1-(BC+AD)*h1=(BC+AD)*h2-(EF+AD)*h2
(CB+EF-BC-AD)*h1=(BC+AD-EF-AD)*h2
(EF-AD)*h1=(BC-EF)*h2
h1/h2=(BC-EF)/(EF-AD)
3/1=(24-EF)/(EF-44)
3(EF-44)=24-EF
3*EF-132=24-EF
4*EF=156
EF=39
Ответ: EF=39
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Другие предметы