Обозначим через А — множество школьников, знающих английский язык; N — множество школьников, знающих немецкий язык; F — множество школьников, знающих французский язык.
Тогда n(A) = 42, n(N) = 30, n(F) = 28, n(A ∩ N) = 5,
n(A ∩ F) = 10, n(N ∩ F) = 8, n(A ∩ N ∩ F) = 3.
Найдем с помощью формулы включений и исключений количество школьников, знающих хотя бы один из перечисленных иностранных языков.
n(A ∪ N ∪ F) = n(A) + n(N) + n(F) =
= n(A ∩ N) – n(A ∩ F) – n(N ∩ F) + n(A ∩ N ∩ F) =
= 42 + 30 + 28 – 5 – 10 – 8 + 3 = 80.
Следовательно, не знают ни одного иностранного языка:
100 – 80 = 20 школьников.
Тогда n(A) = 42, n(N) = 30, n(F) = 28, n(A ∩ N) = 5,
n(A ∩ F) = 10, n(N ∩ F) = 8, n(A ∩ N ∩ F) = 3.
Найдем с помощью формулы включений и исключений количество школьников, знающих хотя бы один из перечисленных иностранных языков.
n(A ∪ N ∪ F) = n(A) + n(N) + n(F) =
= n(A ∩ N) – n(A ∩ F) – n(N ∩ F) + n(A ∩ N ∩ F) =
= 42 + 30 + 28 – 5 – 10 – 8 + 3 = 80.
Следовательно, не знают ни одного иностранного языка:
100 – 80 = 20 школьников.