Алюминиевый провод массой 1 кг имеет сопротивление 16 Ом. Чему равны длина и диаметр провода?

qsn50857 qsn50857    1   16.04.2019 23:40    224

Ответы
Адил1111111111 Адил1111111111  30.05.2020 11:24
 1)What is Tom doing now?
 2)Sorry, I am very busy now.
3)The boys are playing tennis at the stadium.
 4)They are watching TV.
ПОКАЗАТЬ ОТВЕТЫ
businkakiss businkakiss  28.01.2024 14:22
Чтобы решить задачу, нам понадобятся формулы, связывающие массу провода, его длину и диаметр с его сопротивлением.

1. Сопротивление провода можно выразить через его удельное сопротивление (ρ), длину (L) и площадь поперечного сечения (A) следующей формулой:

R = ρ * (L / A),

где R - сопротивление провода.

2. Также нам понадобится знание о связи между массой провода (m), плотностью (ρ) и площадью поперечного сечения (A):

m = ρ * L * A.

Для решения задачи нужно определить параметры длины и диаметра провода.

1. Для начала, зная сопротивление провода, ищем его удельное сопротивление (ρ).
Удельное сопротивление алюминия составляет около 0,028 МОм * мм²/м, или в научной записи 0,028 Ω * мм²/м.

R = ρ * (L / A) => 16 Ом = (0,028 Ω * мм²/м) * (L / A).

2. Второй уравнение, связывающее массу, плотность и площадь:

m = ρ * L * A.

3. Подставляем уравнение площади поперечного сечения (A), полученное из первого уравнения, во второе уравнение:

m = ρ * L * A => m = (0,028 Ω * мм²/м) * L * ((16 Ом) / (0,028 Ω * мм²/м)).

4. Упрощаем уравнение:

m = 16 L.

Теперь у нас есть уравнение, связывающее массу и длину провода. Остается только выразить длину провода через его массу.

5. Длина провода равна массе, деленной на 16:

L = m / 16.

Теперь мы можем найти значение длины провода, зная его массу.

6. Расчет диаметра провода:
Для вычисления диаметра провода нам понадобится знать его площадь поперечного сечения (A).
Площадь поперечного сечения провода можно выразить через его диаметр (d):

A = (π * d²) / 4,

где π - число Пи, округленное до 3,14.

7. Подставляем уравнение площади из шага 6 в первое уравнение:

R = ρ * (L / A) => 16 Ом = (0,028 Ω * мм²/м) * (L / ((π * d²) / 4)).

Теперь, когда у нас есть уравнение, связывающее сопротивление и диаметр провода, давайте найдем его значение.

8. Подставляем значение L, полученное на шаге 5, в уравнение из шага 7:

16 Ом = 0,028 Ω * мм²/м * (m / (π * d²) / 4),

где m - масса провода.

9. Упрощаем уравнение:

16 Ом = 0,007 Ω * мм²/м * (m / (π * d²)).

10. Теперь, пользуясь известной нам массой провода (1 кг), находим диаметр провода:

16 Ом = 0,007 Ω * мм²/м * ((1 кг) / (π * d²)).

11. Упрощаем уравнение:

16 Ом = (0,007 Ω * мм²/м * 1000 г) / (π * d²).

12. Округляем значение числа Пи до 3,14 и упрощаем уравнение:

16 Ом = (0,007 Ω * мм²/м * 1000 г) / (3,14 * d²).

13. Аналогично упрощаем уравнение:

16 Ом = (0,007 Ω * мм²/м * 1000 г) / (3,14 * d²) => d² = (0,007 Ω * мм²/м * 1000 г) / (3,14 * 16 Ом).

14. Подставляем значения и рассчитываем диаметр провода:

d² = (0,007 Ω * мм²/м * 1000 г) / (3,14 * 16 Ом) => d ≈ 0,031 мм.

Таким образом, длина алюминиевого провода составляет m / 16, а его диаметр около 0,031 мм.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Другие предметы