Значение какого из выражений является числом рациональным?


Значение какого из выражений является числом рациональным?

wellbiss wellbiss    2   31.05.2020 09:46    1

Ответы
wolf13131 wolf13131  15.10.2020 11:11

Смотри в решении.

Объяснение:

1) Проверяем 1 выражение:

\frac{\sqrt{15}}{\sqrt{5}} \\\sqrt{\frac{15}{5}}=\sqrt{3} \\

Следовательно, значение приведенного выше выражение является иррациональным.

2) Проверяем 2 выражение:

(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})\\5+\sqrt{5}\sqrt{3}-\sqrt{5}\sqrt{3}-3\\ 5-3=2

Следовательно, значение приведенного выше выражения является рациональным.

3) Проверяем 3 выражение:

\sqrt{3}\sqrt{5}\\\sqrt{3*5}=\sqrt{15}

Следовательно, значение приведенного выше выражение является иррациональным.

4) Проверяем 4 выражение:

(\sqrt{5}+\sqrt{3})^2 \\5+2\sqrt{5}\sqrt{3}+3\\5+2\sqrt{5*3}+3\\5+2\sqrt{15}+3\\2\sqrt{15}+8

Следовательно, значение приведенного выше выражение является иррациональным.

ПОКАЗАТЬ ОТВЕТЫ
historican historican  15.10.2020 11:11

\frac{ \sqrt{15} }{ \sqrt{5} }

\sqrt{3}

__________

( \sqrt{5} + \sqrt{3} ( \sqrt{5} - \sqrt{3} )

5 - 3

2

__________

\sqrt{3} \times \sqrt{5}

\sqrt{15}

__________

( \sqrt{5} + \sqrt{3} ) {}^{2}

5 + 2 \sqrt{15} + 3

8 + 2 \sqrt{15}

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра