Запись числа начинается цифрой 4. Если последнюю его цифру переставить на первое место, то  получим число, в три раза меньше начального. Найти наименьшее натуральное число с таким  свойством ​

ЧеловекКоторыйГлупый ЧеловекКоторыйГлупый    1   30.05.2021 10:55    2

Ответы
stanislavcoola stanislavcoola  27.01.2024 09:46
Хорошо, давайте решим задачу по пошагово.

Пусть искомое число состоит из трех цифр: ABC, где A - это сотни, B - это десятки, C - это единицы.

По условию задачи, число начинается с 4, поэтому A = 4.

Когда мы переставляем последнюю цифру числа (C) на первое место, получаем число CAB. По условию задачи, это число в три раза меньше начального числа ABC.

То есть, мы можем записать следующее уравнение:

CAB = (ABC) / 3

Теперь давайте выразим ABC через A, B и C:

ABC = 100A + 10B + C

Подставим это выражение в уравнение:

CAB = (100A + 10B + C) / 3

Теперь мы можем начать решать задачу численно.

Мы знаем, что A = 4.

Также, мы знаем, что CAB это целое число, поэтому (100A + 10B + C) должно быть кратно 3.

Попробуем различные значения для B и C и найдем наименьшее число, которое удовлетворяет этому условию.

Пусть B = 0 и C = 1:

CAB = (100*4 + 10*0 + 1) / 3 = (400 + 1) / 3 = 133,666...

Оказывается, это число не является целым.

Теперь попробуем B = 1 и C = 2:

CAB = (100*4 + 10*1 + 2) / 3 = (400 + 10 + 2) / 3 = 404 / 3 ≈ 134,666...

Опять же, это число не является целым.

Продолжая таким образом, мы можем пробовать различные комбинации для B и C, увеличивая их значения, пока не найдем наименьшее число, которое удовлетворяет условию.

После нескольких попыток, мы можем увидеть, что при B = 7 и C = 1:

CAB = (100*4 + 10*7 + 1) / 3 = (400 + 70 + 1) / 3 = 471 / 3 = 157

Итак, наименьшее натуральное число с таким свойством - 157.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра