Значение периода первой функции найдём как T1=2*π/4=π/2. Для второй функции Е2=2*π/10=π/5. Таким образом, за период π первая функция совершит 2 периода, а вторая - периодов. Это и есть наименьшее целое число периодов. Таким образом, через интервал времени π суммарная функция будет в той же фазе, что и при х=0. ответ: период суммарной функции равен π.
Период функции у=sin4x равен наименьшему основному периоду функции y=sinx , то есть Т=2П, делённому на коэффициент к=4, это будет Т1=2П/4=П/2 . Аналогично, период функции y=cos10x равен Т2=2П/10=П/5 . Тогда период суммы функций равен наименьшему общему кратному периодов Т1 и Т2. Это будет период Т=НОК(П/2, П/5)=П .
Период функции у=sin4x равен наименьшему основному периоду функции y=sinx , то есть Т=2П, делённому на коэффициент к=4, это будет Т1=2П/4=П/2 .
Аналогично, период функции y=cos10x равен Т2=2П/10=П/5 .
Тогда период суммы функций равен наименьшему общему кратному периодов Т1 и Т2. Это будет период Т=НОК(П/2, П/5)=П .