Выражения 1) (x+3//x-3)+(9/x²-3x) 2) (b+c/b²-/b²-c²-c/b²+bc) 3) (1/x-/x³-8)+(x-2/x²+2x+4)

MaTeMaTiKjjj MaTeMaTiKjjj    3   03.08.2019 21:50    0

Ответы
Gamonga Gamonga  03.10.2020 20:57
Если x \neq 0,and,x \neq 3, то:
\frac{x+3}{x}- \frac{x}{x-3}+ \frac{9}{x^2-3x}= 
 \frac{(x+3)*(x-3)}{x*(x-3)}- \frac{x*x}{(x-3)*x}+ \frac{9}{x(x-3)}=
= \frac{(x+3)*(x-3)-x*x+9}{x(x-3)}= \frac{x^2-3^2-x^2+9}{x(x-3)} = \frac{0}{x(x-3)} =0

\frac{b+c}{b^2-bc}- \frac{4b}{b^2-c^2}- \frac{b-c}{b^2+bc}= 
 \frac{b+c}{b(b-c)}- \frac{4}{(b-c)(b+c)}- \frac{b-c}{b(b+c)}=
= \frac{(b+c)*(b+c)}{b(b-c)(b+c)}- \frac{4b*b}{b*(b-c)(b+c)}- \frac{(b-c)*(b-c)}{b(b+c)*(b-c)}=
= \frac{(b+c)^2}{b(b-c)(b+c)}- \frac{4b^2}{b(b-c)(b+c)}- \frac{(b-c)^2}{b(b+c)(b-c)}=
= \frac{(b+c)^2-4b^2-(b-c)^2}{b(b-c)(b+c)}
= \frac{b^2+2bc+c^2-4b^2-(b^2-2bc+c^2)}{b(b-c)(b+c)}=
= \frac{b^2+2bc+c^2-4b^2-b^2+2bc-c^2}{b(b-c)(b+c)}
= \frac{4bc-4b^2}{b(b-c)(b+c)}= \frac{-4b(b-c)}{b(b-c)(b+c)}=-\frac{4}{b+c}

\frac{1}{x-2}- \frac{6x}{x^3-8}+ \frac{x-2}{x^2+2x+4}= 
 \frac{1}{x-2}- \frac{6x}{x^3-2^3}+ \frac{x-2}{x^2+2x+4}=
= \frac{1}{x-2}- \frac{6x}{(x-2)(x^2+2x+4)}+ \frac{x-2}{x^2+2x+4}=
= \frac{x^2+2x+4}{(x-2)(x^2+2x+4)}- \frac{6x}{(x-2)(x^2+2x+4)}+ \frac{(x-2)^2}{(x-2)(x^2+2x+4)}=
= \frac{x^2+2x+4-6x+(x-2)^2}{(x-2)(x^2+2x+4)}
= \frac{x^2-2*2x+2^2+(x-2)^2}{(x-2)(x^2+2x+4)}
= \frac{(x-2)^2+(x-2)^2}{(x-2)(x^2+2x+4)}=
= \frac{2(x-2)^2}{(x-2)(x^2+2x+4)}=\frac{2(x-2)}{x^2+2x+4}=\frac{2x-4}{x^2+2x+4}
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра