Арифметическая прогрессия - это последовательность чисел, в которой каждое следующее число получается из предыдущего путем прибавления к нему одного и того же числа, которое называется разностью.
В данном случае, первые несколько членов арифметической прогрессии заданы как 23, 18, 13.
Чтобы найти восьмой член этой прогрессии, нам понадобится знание разности этой прогрессии. Чтобы найти разность, нужно найти разность между любыми двумя последовательными членами.
Давайте найдем разность между 18 и 23. Для этого вычтем 18 из 23:
23 - 18 = 5.
Таким образом, разность арифметической прогрессии равна 5.
Теперь, когда у нас есть разность, чтобы найти восьмой член прогрессии, нам нужно применить формулу для нахождения общего члена (n-ого члена) арифметической прогрессии:
a_n = a_1 + (n-1)d,
где a_n - n-ый член прогрессии, a_1 - первый член прогрессии, d - разность прогрессии.
В нашем случае:
a_8 = 23 + (8-1)*5,
a_8 = 23 + 7*5,
a_8 = 23 + 35,
a_8 = 58.
Таким образом, восьмой член арифметической прогрессии равен 58.
Будет 8
Объяснение:
Попробую объяснить
23-5=18
18-5=13
13-5=8
Надо каждое число минусовать на 5
В данном случае, первые несколько членов арифметической прогрессии заданы как 23, 18, 13.
Чтобы найти восьмой член этой прогрессии, нам понадобится знание разности этой прогрессии. Чтобы найти разность, нужно найти разность между любыми двумя последовательными членами.
Давайте найдем разность между 18 и 23. Для этого вычтем 18 из 23:
23 - 18 = 5.
Таким образом, разность арифметической прогрессии равна 5.
Теперь, когда у нас есть разность, чтобы найти восьмой член прогрессии, нам нужно применить формулу для нахождения общего члена (n-ого члена) арифметической прогрессии:
a_n = a_1 + (n-1)d,
где a_n - n-ый член прогрессии, a_1 - первый член прогрессии, d - разность прогрессии.
В нашем случае:
a_8 = 23 + (8-1)*5,
a_8 = 23 + 7*5,
a_8 = 23 + 35,
a_8 = 58.
Таким образом, восьмой член арифметической прогрессии равен 58.